Site Bai · 柏思特

Chinese Pronunciation: /sihˈtə/


[1] Dual Convexified Convolutional Neural Networks
arXiv preprint arXiv:2205.14056 (Under Submission)
Site Bai, Chuyang Ke, Jean Honorio

We propose the framework of dual convexified convolutional neural networks (DCCNNs). In this framework, we first introduce a primal learning problem motivated from convexified convolutional neural networks (CCNNs), and then construct the dual convex training program through careful analysis of the Karush-Kuhn-Tucker (KKT) conditions and Fenchel conjugates. Our approach reduces the memory overhead of constructing a large kernel matrix and eliminates the ambiguity of factorizing the matrix. Due to the low-rank structure in CCNNs and the related subdifferential of nuclear norms, there is no closed-form expression to recover the primal solution from the dual solution. To overcome this, we propose a highly novel weight recovery algorithm, which takes the dual solution and the kernel information as the input, and recovers the linear and convolutional weights of a CCNN. Furthermore, our recovery algorithm exploits the low-rank structure and imposes a small number of filters indirectly, which reduces the parameter size. As a result, DCCNNs inherit all the statistical benefits of CCNNs, while enjoying a more formal and efficient workflow.

[1] Hindsight Trust Region Policy Optimization
The 30th International Joint Conference on Artificial Intelligence (IJCAI 2021)
Hanbo Zhang, Site Bai, Xuguang Lan, David Hsu, Nanning Zheng

Reinforcement Learning(RL) with sparse rewards is a major challenge. We propose Hindsight Trust Region Policy Optimization(HTRPO), a new RL algorithm that extends the highly successful TRPO algorithm with hindsight to tackle the challenge of sparse rewards. Hindsight refers to the algorithm’s ability to learn from information across goals, including ones not intended for the current task. HTRPO leverages two main ideas. It introduces QKL, a quadratic approximation to the KL divergence constraint on the trust region, leading to reduced variance in KL divergence estimation and improved stability in policy update. It also presents Hindsight Goal Filtering(HGF) to select conductive hindsight goals. In experiments, we evaluate HTRPO in various sparse reward tasks, including simple benchmarks, image-based Atari games, and simulated robot control. Ablation studies indicate that QKL and HGF contribute greatly to learning stability and high performance. Comparison results show that in all tasks, HTRPO consistently outperforms both TRPO and HPG, a state-of-the-art algorithm for RL with sparse rewards.

[2] ROI-based Robotic Grasp Detection for Object Overlapping Scenes
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019)
Hanbo Zhang, Xuguang Lan, Site Bai, Xinwen Zhou, Zhiqiang Tian, Nanning Zheng

Grasp detection considering the affiliations between grasps and their owner in object overlapping scenes is a necessary and challenging task for the practical use of the robotic grasping approach. In this paper, a robotic grasp detection algorithm named ROI-GD is proposed to provide a feasible solution to this problem based on Region of Interest (ROI), which is the region proposal for objects. ROI-GD uses features from ROIs to detect grasps instead of the whole scene. It has two stages: the first stage is to provide ROIs in the input image and the second-stage is the grasp detector based on ROI features. We also contribute a multi-object grasp dataset, which is much larger than Cornell Grasp Dataset, by labeling Visual Manipulation Relationship Dataset. Experimental results demonstrate that ROI-GD performs much better in object overlapping scenes and at the meantime, remains comparable with state-of-the-art grasp detection algorithms on Cornell Grasp Dataset and Jacquard Dataset. Robotic experiments demonstrate that ROI-GD can help robots grasp the target in single-object and multi-object scenes with the overall success rates of 92.5% and 83.8% respectively.

[3] A Multi-task Convolutional Neural Network for Autonomous Robotic Grasping in Object Stacking Scenes
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019)
Hanbo Zhang, Xuguang Lan, Site Bai, Lipeng Wan, Chenjie Yang, Nanning Zheng

Autonomous robotic grasping plays an important role in intelligent robotics. However, how to help the robot grasp specific objects in object stacking scenes is still an open problem, because there are two main challenges for autonomous robots: (1)it is a comprehensive task to know what and how to grasp; (2)it is hard to deal with the situations in which the target is hidden or covered by other objects. In this paper, we propose a multi-task convolutional neural network for autonomous robotic grasping, which can help the robot find the target, make the plan for grasping and finally grasp the target step by step in object stacking scenes. We integrate vision-based robotic grasping detection and visual manipulation relationship reasoning in one single deep network and build the autonomous robotic grasping system. Experimental results demonstrate that with our model, Baxter robot can autonomously grasp the target with a success rate of 90.6%, 71.9% and 59.4% in object cluttered scenes, familiar stacking scenes and complex stacking scenes respectively.